Verigy to Showcase New V93000 Smart Scale Test Platform and Present Technical Paper at SEMICON West 2011

Displays to Include Full Product Line of Testers and Probe Cards

CUPERTINO, CA -- (MARKET WIRE) -- 07/07/11 -- Verigy, an Advantest Group company (TSE: 6857) (NYSE: ATE) and a global supplier of innovative test solutions, will showcase its newest technologies -- including the industry's first "smart" testers for the 28nm generation of devices -- at the SEMICON West trade show, July 12-14 at the Moscone Convention Center in San Francisco.

In pod #6575 within the Advanced Technologies Manufacturing TechZONE section of the North Hall, Verigy will introduce its new V93000 Smart Scale™ Generation of scalable test systems for system-chip devices (SOCs), system-in-package devices (SiPs) and advanced wafer-level chip-scale packages (WL CSPs). Compatible with Verigy's production-proven V93000 platform, the Smart Scale series is an innovative "smart" generation of testers with advanced per-pin capabilities designed to perform system-like-stress testing that improves fault-model coverage. This new product series meets device testing needs for the 28nm design node and beyond as well as 3D semiconductor device architectures.

Available in four tester classes with different test head sizes to provide the most economical solution for each application, the V93000 Smart Scale Generation reduces the cost of test while delivering greater capabilities in parallel testing and the industry's first full-performance test solution at wafer sort. By integrating industry-leading digital and analog testing capabilities, Verigy's Smart Scale systems can accommodate twice as many channels per card as previous V93000 cards while simultaneously doubling testing speeds.

Verigy's launch of its V93000 Smart Scale series includes a new generation of digital pin cards.

The new Pin Scale 1600 digital card and Pin Scale 1600-ME (memory emulation) card are the widest scaling pin cards in the industry. Data rates range from direct current (DC) to 1.6 gigabits per second (Gbps) -- twice as fast as previous generations -- with densities doubled or quadrupled in comparison to previous pin cards. The new Pin Scale 1600 cards provide needed test coverage for complex SOC devices by using Verigy's clock-domain-per-pin™, protocol engine-per-pin™, pseudorandom bit stream (PRBS) per pin and the new SmartLoop™ testing of symmetrical high-speed interfaces to achieve true system-like-stress testing. In addition, these highly integrated, small form factor cards provide high-accuracy DC capabilities and can perform asynchronous testing for higher multi-site efficiency and concurrent testing.

Verigy's new Pin Scale 9G card makes at-speed test affordable by combining data rates of up to 8 Gbps with the ultimate per-pin versatility, in which every pin can run with its own clock domain. In addition to providing full test coverage by matching the exact data rates or clock speeds of a device, the Pin Scale 9G's design maximizes the usage of available pins while it minimizes idling resources, supporting bi-direction capabilities on every pin. This card can perform both pattern-based and pattern-less-based testing in single-ended and differential modes of operation, meeting the vast majority of needs throughout high-volume manufacturing.

"At SEMICON West, Verigy is bringing smarter test methodologies to market with the most highly integrated, scalable tester classes in the ATE industry," said Hans-Juergen Wagner, executive vice president of SOC test at Verigy. "Our new V93000 Smart Scale Generation and its companion pin cards offer all of the capabilities needed for testing advanced, high-speed interfaces and high-bandwidth wireless communication devices that drive products such as smart phones and tablet computers."

Also represented in the booth will be Verigy's full range of productivity-enabling products including the V93000 Port Scale RF system for testing wireless communication ICs for applications such as WLAN, GPS and Bluetooth devices; the V93000 HSM series, built on a scalable, multi-generation test platform that fulfills the performance, functionality and economical requirements for testing all available high-speed memory technologies; and the scalable V6000 system that delivers low cost-of-test, high parallelism and high yields for final testing of both Flash and DRAM devices.

Additionally, Verigy will showcase Touchdown Technologies' scalable, MEMS-based probe cards for single-touchdown testing of wafers up to 300mm. These advanced probe cards use patented ACCU-TORQ™ torsional probes to achieve higher probe counts, increased probe density and superior mechanical performance compared to alternative cantilever and dual-cantilever
probes.

Beyond the company's exhibit booth and dedicated meeting space, a technical expert from Verigy's Center of Expertise will present a paper during the trade show's TechXPOT technical session on the TechSITEs stage in the North Hall of the Moscone Convention Center. In the session on "Test in Transition: Emerging Test Solutions and Technologies," Stefan Walther, R&D staff consultant for Verigy’s semiconductor test solutions, will give his presentation on "High-Efficiency & Accurate DC Measurements on Next-Generation Digital Cards" on Wednesday, July 13, from 4 p.m. to 4:30 p.m.

About Verigy, an Advantest Group
Verigy provides advanced semiconductor test systems and solutions used by leading companies worldwide in design validation, characterization, and high-volume manufacturing test. Verigy offers scalable platforms for a wide range of system-on-chip (SOC) test solutions, and memory test solutions for Flash, DRAM including high-speed memories, as well as multi-chip packages (MCP). Verigy also provides advanced analysis tools that accelerate design debug and yield ramp processes. Additional information about Verigy, an Advantest Group company, can be found at www.verigy.com. Information about Advantest can be found at www.advantest.com.

COMPANY CONTACT:
Judy Davies
Vice President of Marketing Communications
+1 408-864-7549
Email Contact

Source: Verigy, Ltd.

News Provided by Acquire Media