DATA CENTER DAY
ACCELERATORS DEMYSTIFIED

Rob Hays
VP & GM, DCG Strategic Planning

August 27, 2015
TODAY’S DISCUSSION

Accelerators Defined

Implementation Options

Workload Requirements

How Intel Accelerates Key Workloads
WHAT IS AN ACCELERATOR?

Hardware assistance that improves the performance beyond general purpose processing for specific workloads
CUSTOMERS CHOOSE ACCELERATORS TO...

• **Why:** Maximize performance of peak loads

• **When:** Performance / TCO >> general purpose at scale

• **Where:** Portions of specific workloads with routine, stable calculations

• **How:** Offload from CPU cores to adjacent workload-targeted hardware; multiple implementation options
Silicon Implementation Options

<table>
<thead>
<tr>
<th></th>
<th>Standardized Solution</th>
<th>Customized Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor (CPU)</td>
<td>Product designed for application software with common math & logic operations</td>
<td>Field Programmable Gate Array (FPGA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Merchant product designed for programming custom logic</td>
</tr>
<tr>
<td>Application-Specific Standard Product (ASSP)</td>
<td>Merchant product designed for a specific, common purpose</td>
<td>Application Specific Integrated Circuit (ASIC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proprietary silicon designed for a fixed purpose by its user</td>
</tr>
</tbody>
</table>
Similar to...

<table>
<thead>
<tr>
<th>Standardized Solution</th>
<th>Customized Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU ≈ Word Processor</td>
<td>FPGA ≈ Printing Press</td>
</tr>
<tr>
<td>ASSP ≈ Rubber Stamp</td>
<td>ASIC ≈ Stone Tablet</td>
</tr>
</tbody>
</table>

Programmable

Fixed-Function
Strengths of Each Implementation

<table>
<thead>
<tr>
<th></th>
<th>Standardized Solution</th>
<th>Customized Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable</td>
<td>CPU</td>
<td>FPGA</td>
</tr>
<tr>
<td></td>
<td>Best for performance across a broad range of workloads and lowest total cost of ownership</td>
<td>Best for algorithms that are changing and lower R&D investment than ASIC/ASSP</td>
</tr>
<tr>
<td>Fixed-Function</td>
<td>ASSP</td>
<td>ASIC</td>
</tr>
<tr>
<td></td>
<td>Best for fixed-function, stable logic with broad market applicability</td>
<td>Best for proprietary logic with enough value to justify the silicon design investment</td>
</tr>
</tbody>
</table>
INTEGRATED OR DISCRETE

Discrete chosen to
• maximize configuration flexibility
• improve time to market
• minimize per-chip costs

Integration chosen to
• improve performance
• reduce energy consumption
• minimize system costs
DIVERSE WORKLOAD REQUIREMENTS

Top 3 Growth Workloads

3.7X
Network Core & Wireless

1.8X
Decision Support

1.4X
Digital Content Creation & Delivery

Intel estimates; bubble size is relative CPU intensity
GENERAL PURPOSE XEON PLATFORM PERFORMANCE

1.3-1.5X faster performance each generation

Platform Integration
- e.g. fabrics, photonics, memory, SSDs

New Instructions
- e.g. SIMD, AVX, TSX, AES

Feature Innovations
- e.g. buses, cache, core architecture

Customization
- e.g. custom SoCs, FPGA

Moore’s Law
- e.g. faster transistors, energy efficiency, circuit density
INTEL’S APPROACH TO ACCELERATION

- Optimize Software for IA: e.g. Intel® Data Plane Development Kit
- Discrete Accelerator: e.g. PCIe FPGAs
- Integrated Accelerator: e.g. Intel Iris Pro Graphics
- New IA Instructions: e.g. Advanced Vector Extensions
Example Usages for FPGA Accelerators

<table>
<thead>
<tr>
<th>Customers</th>
<th>Cloud Service Providers</th>
<th>Security Appliance Vendors</th>
<th>Comms Service Providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Image Identification</td>
<td>Security</td>
<td>Firewall, VPN, Router</td>
</tr>
<tr>
<td>Algorithms</td>
<td>Convolutional Neural Network</td>
<td>Encryption</td>
<td>Virtual Switching</td>
</tr>
</tbody>
</table>

1. **Accelerate one application across many servers**
2. **Implement customer-specific solutions**
3. **Reprogram for evolving algorithms**

Xeon + **FPGA**
Accelerators are deployed when they provide >> performance/TCO at scale than general purpose CPUs alone

The three typical accelerator implementations are merchant ASSPs, proprietary ASICs, & programmable FPGAs

Intel’s approach is to optimize software for IA, integrate discrete accelerators for key workloads, and add new instructions when the accelerator has broad appeal and is cost effective
THANK YOU!

QUESTIONS?
The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “goals,” “plans,” “believes,” “seeks,” “estimates,” “continues,” “may,” “will,” “should,” and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be important factors that could cause actual results to differ materially from the company's expectations. Demand for Intel's products is highly variable and could differ from expectations due to factors including changes in business and economic conditions; consumer confidence or income levels; the introduction, availability and market acceptance of Intel's products; products used together with Intel products and competitors' products; competitive and pricing pressures, including actions taken by competitors; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel's gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; and product manufacturing quality/yields. Variations in gross margin may also be caused by the timing of Intel product introductions and related expenses, including marketing expenses, and Intel's ability to respond quickly to technological developments and to introduce new products or incorporate new features into existing products, which may result in restructuring and asset impairment charges. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Results may also be affected by the formal or informal imposition by countries of new or revised export and/or import and doing-business regulations, which could be changed without prior notice. Intel operates in highly competitive industries and its operations have high costs that are either fixed or difficult to reduce in the short term. The amount, timing and execution of Intel's stock repurchase program could be affected by changes in Intel's priorities for the use of cash, such as operational spending, capital spending, acquisitions, and as a result of changes to Intel's cash flows or changes in tax laws. Intel's expected tax rate is based on current tax law and current expected income and may be affected by the jurisdictions in which profits are determined to be earned and taxed; changes in the estimates of credits, benefits and deductions; the resolution of issues arising from tax audits with various tax authorities, including payment of interest and penalties; and the ability to realize deferred tax assets. Gains or losses from equity securities and other investments, including marketing expenses, and Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. Intel's results could be affected by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. Intel's results may be affected by the timing of closing of acquisitions, divestitures and other significant transactions. In addition, risks associated with our proposed acquisition of Altera are described in the "Forward Looking Statements" paragraph of Intel's press release dated June 1, 2015, which risk factors are incorporated by reference herein. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Form 10-Q, Form 10-K and earnings release.
SOFTWARE AND WORKLOADS USED IN PERFORMANCE TESTS MAY HAVE BEEN OPTIMIZED FOR PERFORMANCE ONLY ON INTEL MICROPROCESSORS. PERFORMANCE TESTS, SUCH AS SYSMARK AND MOBILEMARK, ARE MEASURED USING SPECIFIC COMPUTER SYSTEMS, COMPONENTS, SOFTWARE, OPERATIONS AND FUNCTIONS. ANY CHANGE TO ANY OF THOSE FACTORS MAY CAUSE THE RESULTS TO VARY. YOU SHOULD CONSULT OTHER INFORMATION AND PERFORMANCE TESTS TO ASSIST YOU IN FULLY EVALUATING YOUR CONTemplATED PURCHASES, INCLUDING THE PERFORMANCE OF THAT PRODUCT WHEN COMBINED WITH OTHER PRODUCTS.

All dates, forecasts and products specified in this presentation are subject to change without notice. This presentation will not be updated to reflect any such changes.

Copyright 2015 Intel Corporation.

*Other names and brands may be claimed as the property of others.