A Single Dose of RG-101, a GalNAc-Conjugated Oligonucleotide Targeting miR-122, Results in Undetectable HCV RNA Levels in Chronic Hepatitis C Patients at Week 28 of Follow-up

M.H. van der Ree ¹, J.M.L. de Vree ², F. Stelma ¹, S.B. Willemse ¹, M. van der Valk ¹, S. Rietdijk ¹,³, R. Molenkamp ⁴, J. Schinkel ⁴, S. Hadi ⁵, M. Harbers ⁵, A. van Vliet ⁵, J. Udo de Haes ⁵, P. Grint ⁶, S. Neben ⁶, N. Gibson ⁶ and H.W. Reesink ¹

1. Dep. of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
2. Dep. of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
3. Dep. of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
4. Dep. of Medical Microbiology, Clinical Virology Laboratory, Academic Medical Center, Amsterdam, The Netherlands
5. PRA Healthsciences, Zuidlaren, The Netherlands
6. Regulus Therapeutics, San Diego, CA, USA
No conflict of interest.
NS5A inhibitors

miR-122 inhibitors

Adapted from Manns et al, Nature Reviews Drug Discovery;12;595–610;2013
Hepatitis C Virus and miR-122

Introduction

miR-122
- Highly conserved liver-specific miRNA
- Key regulator of cholesterol and fatty-acid synthesis
- Important host factor for hepatitis C virus replication

miR-122 and HCV RNA
- 5’ UTR contains two highly conserved miR-122 binding sites (S1 and S2)
- miR-122 binding promotes HCV RNA stability and accumulation, and protects the HCV genome from degradation

2. Esau et al, *Cell Metab* 2006
5. Lanford et al, *Science* 2010
7. Sedano et al, *Cell Host Microbe* 2014
RG-101 Targets miR-122

RG-101

- Oligonucleotide inhibitor of miR-122 that is linked to GalNAc carbohydrate
- GalNAc binds the asialoglycoprotein receptor expressed by hepatocytes
- Increased potency (~20-fold) compared to non-conjugated oligonucleotide
Study Objectives

Primary
- Safety and tolerability of administration of a single subcutaneous dose of RG-101 to patients with a chronic hepatitis C virus infection

Secondary
- Pharmacokinetic profile of RG-101
- Antiviral effect of RG-101

Exploratory
- Cytokines/chemokines kinetics
- Viral sequencing of 5’UTR HCV RNA
Key Inclusion/Exclusion Criteria

Inclusion criteria
- Male or female, 18-65 years old
- Chronic HCV infection, genotype 1, 3 or 4
- Treatment-naive or relapsed after IFN based therapy

Exclusion criteria
- HBV or HIV co-infection
- Cirrhosis Child-Pugh B or C
- Other causes of liver disease
- History of hepatocellular carcinoma
Study Design

RG-101
Single s.c. dose

Main study

- **Randomized**
 - n=32

 - 2 mg/kg
 - n=16
 - 4 mg/kg
 - n=16

Extended follow-up

- **Extended FU**
 - n=10
 - n=12

Study visit every 4 weeks

- **W0**
- **W1**
- **W2**
- **W3**
- **W4**
- **W5**
- **W8**
- **W28**

Exclusion
- Placebo dosed patients
- Viral rebounders (> 1 log increase in HCV RNA from nadir)

Inclusion
Patients with HCV RNA:
- > 2 log decrease from baseline AND
- < 1 log increase from nadir

van der Ree, AASLD 2015 - 8
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>2 mg/kg RG-101 (n=14)</th>
<th>4 mg/kg RG-101 (n=14)</th>
<th>Placebo (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) - mean ± SD</td>
<td>49 ± 8</td>
<td>52 ± 8</td>
<td>55 ± 3</td>
</tr>
<tr>
<td>Male - no.</td>
<td>13</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Weight (kg) - mean ± SD</td>
<td>84 ± 16</td>
<td>84 ± 25</td>
<td>80 ± 4</td>
</tr>
<tr>
<td>Log_{10} HCV RNA level - mean ± SD</td>
<td>6.2 ± 0.5</td>
<td>6.2 ± 0.4</td>
<td>6.4 ± 0.5</td>
</tr>
<tr>
<td>Treatment naive - no</td>
<td>8</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Ethnicity – no.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• White</td>
<td>13</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>• Asian</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>• Other</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HCV genotype – no.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1</td>
<td>9</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>• 3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>• 4</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Stage of fibrosis(^a) – no.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• F0-F1</td>
<td>10</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>• F2-F3</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>• F4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{a. Stage of fibrosis was determined by liver elastography (Fibroscan)}\)
Adverse Events

> 10% of incidence in patients dosed with RG-101

<table>
<thead>
<tr>
<th></th>
<th>Main study</th>
<th>Extended Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo (n=4)</td>
<td>2 mg/kg RG-101 (n=14)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Insomnia</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Emotional disorder</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Back pain</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Myalgia</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Headache</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dizziness</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Skin irritation</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

van der Ree, AASLD 2015 - 10
Safety

Overall
• Single injection of RG-101 was well tolerated in 28 HCV patients
• AE’s were mostly mild and transient; no SAE’s or study discontinuations
• One patient had severe intrahepatic cholestasis related to alcohol abuse after a single dose of 4 mg/kg RG-101

Laboratory values
• No clinically significant changes in hematological and renal laboratory values
• Decrease in mean ALT and AST levels to a normal range

Cytokine/chemokine levels
• Decline in circulating IP-10 levels
• Other cytokines and chemokines did not differ between patients dosed with RG-101 and placebo

1. See poster #2263, F. Stelma et al.
Pharmacodynamics
Markers of miR-122 inhibition

- Alkaline phosphatase levels increased in patients dosed with RG-101 (direct effect of miR-122 inhibition)
- Cholesterol levels decreased in patients dosed with RG-101 (indirect effect of miR-122 inhibition)

van der Ree, AASLD 2015 - 12
Substantial Decrease in HCV RNA Levels

Week 4

Change in HCV RNA from baseline +/- SEM (log10 IU/mL)

Placebo 2 mg/kg 4 mg/kg

Mean change from baseline: 0.0 - 4.1 - 4.8

P < 0.0001

P < 0.0001

ns
Undetectable HCV RNA Levels at Week 28

Main study

Extended follow-up

2 mg/kg RG-101

4 mg/kg RG-101

HCV RNA TND (n=3)

HCV RNA TND at week 28:
- GT 1 (n=1)
- GT 3 (n=2)
- GT 4 (n=3)
Sequencing of HCV RNA 5’ UTR

Samples

- Baseline and at time of viral rebound

Method

- RNA isolation from plasma
- 5’ RACE cDNA synthesis (HCV RNA > 20,000 IU/mL)
- Population sequencing

Figure adapted from Machlin et al, PNAS. 2011, PMID: 21220300
Sequencing Results

- No baseline mutation in binding sites (S1, S2 and additional base pair interactions)
- In 11/19 patients with viral rebound “matched” sequence available
 - In 4/11 patients no mutation in miR-122 binding sites
 - In 5/11 patients C3U mutation (GT 1)
 - In 2/11 patients C2G+C3U mutation and selection of A1G+U4A polymorphisms (GT 3 and 4)
Conclusions

Safety

- Single dose RG-101 was safe and well tolerated in HCV patients
- AE’s were generally mild and transient; no SAE and discontinuations

Antiviral effect

- Viral load reductions observed in HCV genotype 1, 3 and 4 patients
- 6 patients had undetectable HCV RNA levels 28 weeks after a single dose RG-101
- Mutation(s) in miR-122 binding site in patients with virological rebound ≤ week 16

Ongoing studies

- Replicon assay to assess viral fitness of mutants
- T- and NK-cell analyses
- Plasma miRNA profiling
- Phase II study to combine RG-101 with DAA’s
Acknowledgements

Academic Medical Center
Martine Peters
Ad van Nuenen
Jeltje Helder
Sjoerd Rebers
Louis Jansen
Peter Jansen
Ulrich Beuers
Neeltje Kootstra

Onze Lieve Vrouwe Gasthuis
Bert Baak

PRA Healthsciences
Marc Bolt

Regulus Therapeutics
Jacqui Blem

University Medical Center Groningen
Lyda Engelsman
Marjan Bijnomen
Hans Blokzijl

All patients who participated in the study