Pharmacokinetic/Pharmacodynamic Analysis of Extended-Release Once-Daily SPN-804 (Oxtellar XR™) in Adults with Epilepsy: Correlation of MHD Concentrations and Seizure Reduction

Background

Discontinue AEDs (ECG) is almost completely converted to 10-methyl derivative (MHD), the active metabolite primarily responsible for the drug’s antiseizure activity. An alternate explanation (ER) formulation, fits require twice-daily dosing due to the rapid absorption and extensive first-pass metabolism by CYP3A4. The results have been consistent with the conclusions reached previously on this topic. OXC and MHD increased with weight; production of MHD from OXC was larger when the administered dose was smaller; and compartment model; PK of MHD followed a one-compartment model with MHD produced by a first-order process from the central MHD model was used to estimate MHD Cmin for 166 patients receiving SPN-804 treatment (PROSPER population). PK/PD (Emax) Model

Methods

PROSPER Study

- Multicenter, multinational, randomized, double-blind, parallel-group study
- Randomization: 1:1 (1200 mg QD, 2400 mg QD: SPN-804 EDI) to blinded dose sequence
- No washout period before baseline seizure frequency

PK/Safety

- All patients with refractory partial-onset seizures: A randomized controlled trial.

PK/PD Modeling

For this concentration-response analysis, percent change from baseline 28-day seizure frequency (PCH) was plotted against MHD Cmin for each patient in the population subgroup (Fig. 1).

Population PK Model

The primary and structural population pharmacokinetic (PK) model (OXC model) and MHD was derived from a nonlinear mixed-effects population PK model fitting 28 days of OXC and MHD concentrations using a maximum likelihood estimation strategy. PK model was used to estimate MHD Cmin for 166 patients receiving SPN-804 treatment (PROSPER population). PK/PD (Emax) Model

Sensitivity analyses were performed to examine the concentration-response relationship above and below critical values of Cmin and PCH. At all Cmin critical values between 10 and 18 mg/L (transitional regions, Fig. 3), the concentration-response (r) was significant (P < 0.05), and number of patients above/below critical PCH was significantly larger for concentrations above the critical r than concentrations below, demonstrating that MHD Cmin values as low as 10 mg/L significantly improves clinical improvement.

Key Observations

- PK/PD analysis, 1200 mg SPN-804 was shown to be an efficacious dose in the concentration-response analysis. Most patients receiving SPN-804 1200 mg/day achieved MHD concentrations associated with a significant clinical effect.

Conclusions

- Following OXC administration and absorption, OXC is almost completely converted to the MHD active metabolite. As a population PK model was used to estimate MHD Cmin, 180 patients receiving SPN-804 treatment (PROSPER population). PK/PD (Emax) Model

Figure 1. Plot of Individual MHD Concentration vs. Assigned Dose

- No washout period before baseline seizure frequency

- All patients with refractory partial-onset seizures: A randomized controlled trial.

Figure 2. Median % Seizure Reduction in PROSPER Study Population Stratified by MHD Concentration vs. Assigned Dose

- No washout period before baseline seizure frequency

- All patients with refractory partial-onset seizures: A randomized controlled trial.