Novel RNAi-Lipid Nanoparticle Therapeutics for Hypertriglyceridemia

N Hariharan MSc, PhD

Keystone Symposia Conference: Liver Metabolism and Nonalcoholic Fatty Liver Disease (NAFLD)
Siling of TG-Lipid Metabolism Genes by RNAi-triggers

“RNAi-triggers for multiple genes e.g., ApoC3, ANGPTL3, expressed in the liver with role in TG/Lipid Metabolism, as novel therapy for HTG (rare/common) and NAFLD-NASH”

• Combine complementary mechanisms: a) liver uptake/clearance, b) plasma lipolysis/clearance, c) liver synthesis/secretion
• Enhance efficacy, broaden patient coverage

• RNAi-trigger
 • RNAi silences target gene by mRNA degradation through RISC
 • Tekmira Lipid Nano Particle (LNP) delivery platform enables RNA-based therapeutics e.g., RNAi, mRNA, microRNA
 • Shields RNAi from serum nucleases; Induces cellular uptake; Promotes endosomal uptake and delivery to RISC
 • RNAi-trigger, chemically modified RNAi encapsulated in LNP
ApoC3

Role in TG-Lipid Metabolism, Liver Steatosis

- **Glycoprotein; synthesized mostly in the liver; secreted; 79 aa**
- **Key regulator of plasma TG levels by inhibiting...**
 - Receptor mediated uptake/clearance of plasma TG-rich particle by the liver
 - HL (↓ hepatic VLDL clearance)
 - LPL activation by ApoC2 (↓ plasma lipolysis of TG-rich particles)
- **Genetics - mouse, human**
 - Human loss-of-function: Hypo-TG/reduced CV events; gain of function: NAFLD/insulin resistance
- **Pharmacology - mouse, human**

ANGPTL3

Role in TG-Lipid Metabolism, Liver Steatosis

- **Member of ANGPTL family; synthesized primarily in the liver; secreted; 460 aa**
- **Key regulator of plasma TG and lipid levels by inhibiting...**
 - Lipoprotein Lipase (LPL) mediated lipolysis and clearance of plasma TG-rich particles
 - Inhibits LPL by enhancing its cleavage by pro-convertase (PCSK5)
 - Endothelial Lipase (EL) /preventing clearance of plasma HDL-c
- **Genetics - mouse, human**
 - Human loss-of-function: Familial Combined Hypolipidemia
- **Pharmacology – mouse, human**
Hypertriglyceridemia (HTG)
Silencing of ApoC3 & ANGPTL3

1. TKM-ApoC3, the RNAi-trigger against human ApoC3
 • Characterization in human ApoC3-Tg mice
 • Gene silencing in the liver (mRNA); Plasma ApoC3 (PD marker) and TG (efficacy) lowering; Other metabolic parameters
 • Safety assessment

2. Combination of RNAi-triggers against ApoC3 & ANGPTL3
 • Silencing of two complementary/overlapping mechanisms
 • TKM-mApoC3 + TKM-mANGPTL3 (the RNAi-triggers against mouse ApoC3 & mouse ANGPTL3) in HFD mice
 • Plasma TG lowering; Gene silencing in the liver (mRNA)
TKM-ApoC3
Potent Silencing of Human ApoC3 Gene

Human ApoC3 mRNA

HepG2 cells

- **Human ApoC3 (%) of untreated/GAPD normalized**
- **log concentration (ng/ml)**
- **TKM-ApoC3**

hApoC3-Tg mouse liver

- **Human ApoC3 (%) Luc2-LNP**
- **Drug administration:** Single iv; 1, 0.3, 0.1, 0.03, 0.01 mg/kg; n=3 (females); Liver harvested after 24-hrs from 5 hr fasted mice

- **KD$_{50}$:** 0.18 ng/mL*
 - **KD$_{75}$:** 0.55 ng/mL*
 - *Approximate values

- **KD$_{50}$:** 0.026 mg/kg*
 - **KD$_{75}$:** 0.104 mg/kg*
 - *Approximate values

Significantly different compared to Luc2-LNP. ***p<0.001, **p=0.001-0.01, (1way-ANOVA). Mean ± SD.
TKM-ApoC3

Rapidly Lowers Plasma ApoC3 & TG in hApoC3-Tg Mice

Human ApoC3

\[
\mu g/mL; 24-hrs
\]

TG

\[
mg/dL; 24-hrs
\]

<table>
<thead>
<tr>
<th>Drug dose (mg/kg)</th>
<th>Human ApoC3</th>
<th>TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500 *****</td>
<td>-69%*</td>
</tr>
<tr>
<td>0.3</td>
<td>300 *****</td>
<td>-83%**</td>
</tr>
<tr>
<td>0.1</td>
<td>200 ***</td>
<td>-76%**</td>
</tr>
<tr>
<td>0.03</td>
<td>100 ***</td>
<td>-78%**</td>
</tr>
</tbody>
</table>

Drug administration: Single iv; 1, 0.3, 0.1, 0.03 mg/kg; n=3 (females)

Plasma/Liver collected after 24-hrs from 5 hr fasted mice

Significantly different compared to Luc2-LNP. ***p<0.001, **p=0.001-0.01, *p=0.01-0.05.
(1way-ANOVA). Mean ± SD
TKM-ApoC3
Sustained Lowering of Plasma ApoC3 & TG in hApoC3-Tg Mice

Human ApoC3
(μg/mL; weekly)

TG
(mg/dL; weekly)

Drug administration: Weekly iv (Day 0, 7, 14, 21); n=4-5 (females)
Plasma collected from 5 hr fasted mice: Day -1, Day 6, Day 13, Day 20, Day 27 (terminal)

Significantly different compared to Luc2-LNP. ***p<0.001, **p=0.001-0.01
(1way ANOVA). Mean ± SE
TKM-ApoC3
Improves Overall Metabolic profile in hAPoC3-Tg Mice

Drug administration: Weekly iv (Day 0, 7, 14, 21); n=4-5 (females)
Blood (glucose)/Plasma (lipid) collected from 5 hr fasted mice: Day 20

Significantly different compared to Luc2-LNP. ***p<0.001, **p=0.001-0.01.
(1way-ANOVA). Mean ± SE
TKM-ApoC3
Durable Gene Silencing/TG Lowering in hApoC3-Tg Mice

Human ApoC3
(liver mRNA; weekly)

- Luc2-LNP 1 mg/kg
- TKM-ApoC3 1 mg/kg

Human ApoC3
(plasma; weekly)

- Luc2-LNP 1 mg/kg
- TKM-ApoC3 1 mg/kg

TG
(plasma; weekly)

- Luc2-LNP 1 mg/kg
- TKM-ApoC3 1 mg/kg

Drug administration: Single iv; n=3 (males); Plasma collected from 5 hr fasted mice: Day 1, Day 7, Day 14

Significantly different compared to Luc2-LNP. ***p<0.001, **p0.001-0.01, *p=0.01-0.05. (t-test). Mean ± SD
TKM-ApoC3
Preliminary Safety Assessment

• **Liver steatosis**
 • No risk based on liver lipid content compared to control treatment in hApoC3-Tg mice after repeated administration

• **Immunestimulation**
 • Low risk based on liver IFIT induction activity in mice and cytokine (MCP-1, IL-1Rα, IL-6) induction profile in human whole blood

• **Off-target activity**
 • Minimum risk against human genome (bioinformatics analysis)
 • AS strand 100% homologous to Cyno monkey (toxicity species)
TKM-mApoC3 & TKM-mANGPTL3
Durable Gene Silencing in HFD Mice

>50% silencing of Mouse ApoC3 or ANGPTL3 gene lasted for over 3 weeks

C57BL/6 mice on high-fat diet; Drug administration: Single iv dose (0.3 mg/kg), n = 3/group (females)
Liver harvested from 5-hr fasted mice (Day 1, 7, 14, 21)

NOTE: Day 21 values are expressed as % of Day 1 Untreated Control
TKM-mApoC3 + TKM-mANGPTL3

Additive Effect on Plasma TG Lowering in HFD Mice

(% of pre-treatment; Day 6)

Drug Dose: 0.5 mg/kg

Drug Dose: 0.25 mg/kg

CBA/CaJ mice on HFD; Drug administration: Single iv (Day 0); n=6 (males)

Plasma collected from 5 hr fasted mice: Day -1, Day 6

Statistical significance. ***p<0.001 Vs. Luc2-LNP. (1way ANOVA). Mean ±SE

Combo Vs. Mono: ###p<0.001 Vs. TKM-mApoC3 or TKM-mANGPTL3. (t-test).

Combo 0.125+0.125 Vs. Mono 0.5: $$$p<0.001 Vs.TKM-mApoC3 or TKM-mANGPTL3 (t-test).
TKM-mApoC3 + TKM-mANGPTL3
Additive Effect on Plasma TG Lowering in HFD Mice

(% of pre-treatment; Day 20)

Drug Dose: 0.5 mg/kg

Drug Dose: 0.25 mg/kg

CBA/CaJ mice on HFD; Drug administration: **Weekly, iv** (Day 0, 7, 14); n=6 (males)

Plasma collected from 5 hr fasted mice: Day -1, Day 20

Statistical significance. ***p<0.001 Vs. Luc2-LNP. (1way ANOVA). Mean ±SE, n=6

Combo Vs. Mono: ###p<0.001, ##p=0.001-0.01 Vs. TKM-mApoC3; +++p<0.001, ++p=0.001-0.01 Vs. TKM-mANGPTL3. (t-test).

Combo 0.125+0.125 Vs. Mono 0.5: $$$p<0.001 Vs. TKM-mApoC3; &&p=0.001-0.01 Vs. TKM-mANGPTL3 (t-test)
TKM-mApoC3 + TKM-mANGPTL3

Gene Silencing in HFD Mice – Liver mRNA

CBA/CaJ mice on HFD; Drug administration: Weekly, iv (Day 0, 7, 14, Day 21)
n=6 (males) Liver harvested from 5 hr fasted mice: Day 27

Significantly different compared to Luc2-LNP. ***p<0.001 (1way-ANOVA). Mean ± SD
TKM-mApoC3 vs. TKM-mANGPTL3
Mechanism-of-Action

Plasma LPL Activity (mU/mL)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>LPL Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luc2-LNP 1 mg/kg</td>
<td>****</td>
</tr>
<tr>
<td>TKM-mApoC3 1 mg/kg</td>
<td></td>
</tr>
<tr>
<td>TKM-mANGPTL3 1 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

Liver TG Secretion (net increase, mg/dL)

![Liver TG Secretion Graph]

Liver SCD1 mRNA (difference Vs. Luc2-LNP)

![Liver SCD1 mRNA Graph]

CBA/B6 mice on high fat diet; Drug administration: iv (Day 0, Day 7); n=5 (males); Animals fasted on Day 13 for 16h; Plasma collected prior to heparin treatment and 15min post-heparin treatment; LPL activity assessed using a fluorometric assay kit.

CBA/CaJ mice on high fat diet; Drug administration: iv (Day 0); n=5-6 (males); At Day 7, animals fasted for 4h; Plasma collected prior to and hourly till 4h following P-407 injection for plasma TG analysis.

Liver samples from ob/ob BTBR lep-/- males on regular chow diet; Drug administration: Weekly, iv (Day 1, 7, 14, 21); n=5-6. Plasma collected from 5 hr fasted mice. Liver harvested on Day 27.

Significantly different compared to Luc2-LNP. **p=0.001-0.01. (1way-ANOVA). Mean ± SE.
RNAi-Trigger Therapeutics for HTG

Summary & Conclusions

• TKM-ApoC3, the RNAi-trigger for human ApoC3
 • In human ApoC3-Tg mouse HTG model
 • Potent and durable gene silencing (liver mRNA, plasma protein)
 • Fast, potent, efficacious and sustained plasma TG lowering
 • Beneficial plasma cholesterol change; Improved glucose control
 • Safety
 • Low immune-stimulation, off-target activity and liver steatosis risk

• TKM-mApoC3 in combination with TKM-mANGPTL3
 • Additively lowers plasma TG in HFD mouse HTG model

TKM-ApoC3, in combination with TKM-ANGPTL3, is progressing forward into IND-enabling studies
Acknowledgements

Tim Chiu
Andrew Wieczorek
Nick Snead
Alice Li
Chris Pasetka
Kevin McClintock
Jennifer Cross
Marty Chuong
Eric Lu
Clay Shyu
Amy CH Lee
Wayne Wallis
Mike Abrams

Thank You